# | ШПАРГАЛКА | ВКТ-9

×

ВЫЧИСЛИТЕЛЬ КОЛИЧЕСТВА ТЕПЛОТЫ

теплоком

 $(\mathsf{X})$ 

BKT-9

Modeup 01 020

Доп.выходы Блок пит



Иногда так случается, что прибор, который вы держите в руках, нужно было подключить «еще вчера». Вы оказываетесь на объекте, нужно немедленно приниматься за работу, но сделать все правильно без подсказок сложно.

# ЗНАКОМАЯ СИТУАЦИЯ? Сейчас поможем

Мы создали эту шпаргалку для вас. Здесь собраны основные практические советы, которые помогут шаг за шагом правильно подключить и настроить вычислитель ВКТ-9, произведенный компанией Теплоком. Уверены, что это поможет как профессионалу своего дела, так и новичку успешно справиться с задачей.

Тепловычислитель ВКТ-9 (Рисунок 1) нужен для вычисления количества тепловой энергии, которое рассчитывается прибором на основании полученных данных от преобразователей. К ним относятся: датчики температуры (термосопротивления), преобразователи давления и водосчетчики (расходомеры). Преобразователи подключаются к тепловычислителю по проводным линиям.

В коммерческом учете тепловой энергии вычислитель и все преобразователи объединяются в теплосчетчик. Чтобы узел учёта (УУ) приняли к коммерческому учету, обязательным требованием является наличие паспорта на теплосчётчик с указанием заводских номеров всех приборов, входящих в его состав, с датами их поверок.

# ОБЩИЙ ВИД ВЫЧИСЛИТЕЛЯ



## ВСЕГО ВЫПУСКАЕТСЯ ДВЕ МОДЕЛИ ТЕПЛОВЫЧИСЛИТЕЛЯ: ВКТ-9-01 И ВКТ-9-02.

## **BKT-9-01**

Модель ВКТ-9 с обозначением 01 подходит для одной тепловой системы, например, для системы горячего водоснабжения (ГВС) или системы отопления.

ВКТ-9-01 позволяет подключить до 3-х расходомеров, 3-х датчиков температуры и 3-х преобразователей давления.

Дополнительно к тепловычислителю ВКТ-9-01 можно подключить ещё 3 расходомера, например, для учёта холодной воды и 1 датчик температуры для измерения температуры холодной воды на источнике тепловой энергии (котельная) или для учёта температуры окружающей среды.

# BKT-9-02

Модель ВКТ-9 с обозначением 02 подходит для двух тепловых систем. Можно сказать, два вычислителя в одном.

ВКТ-9-02 позволяет подключить до 6-и расходомеров, 6-и датчиков температуры и 6-и преобразователей давления.

Дополнительно к тепловычислителю ВКТ-9-02 можно подключить ещё 3 расходомера (как и в модели ВКТ-9-01) и 2 датчика температуры для учёта температуры холодной воды на источнике тепловой энергии (котельная) или для измерения температуры окружающей среды.

# МОДЕЛИ ВКТ-9

Для определения модели тепловычислителя достаточно посмотреть на лицевую часть корпуса прибора, где содержится наклейка с указанием модели и заводского номера (Рисунок 2). Также модель прибора указана в паспорте ВКТ-9. Если прибор в руках, его модель можно узнать в меню «Сервис».



Рисунок 2. Маркировка ВКТ-9

# ПИТАНИЕ ВКТ-9

По умолчанию ВКТ-9 запитывается от собственного элемента питания (батарейка). Ресурс элемента питания превышает не менее 4 года (межповерочный интервал тепловычислителя).

Тепловычислитель может комплектоваться и специальным сетевым блоком питания, который заказывается отдельно.



Рисунок 3. Питание ВКТ-9

Рекомендуем комплектовать ВКТ-9 сетевым блоком питания в случаях, когда тепловычислитель будет опрашиваться (с него будут считываться данные) через внешние устройства, например, модем GSM/GPRS, преобразователь RS-232/Ethernet. При частом (каждый день) опросе ВКТ-9 через внешние устройства увеличивается энергопотребление, и ресурса установленного элемента питания хватит менее чем на 4 года (Рисунок 3). Весь перечень совместимых с ВКТ-9 преобразователей (расходомеры, датчики температуры и преобразователи давления) представлен в «Описании типа средств измерений ТСК-9 или TCK-TK». Теплосчетчик TCK-9 (TCK-TK) не зря так называется, он выполнен на базе тепловычислителя ВКТ-9. Документация находится на официальном сайте Теплоком:

https://teplocom-sale.ru/documents/teploschetchiki/teploschetchik-tsk9/

## ПРИМЕР НАИБОЛЕЕ РАСПРОСТРАНЕННОЙ КОМПЛЕКТАЦИИ ПРЕОБРАЗОВАТЕЛЕЙ, КОТОРЫЕ ИСПОЛЬЗУЮТСЯ С ВКТ-9:

- Электромагнитные преобразователи расхода ПРЭМ, выпускаемые компанией Теплоком.
- Датчики температуры (термосопротивления) КТСП-Н.
- Преобразователи давления СДВ-И.

Если необходимо использовать ВКТ-9 не в коммерческом учете, а в технологическом, то можно использовать и другие преобразователи, которые не указаны в «Описании типа…», но характеристики преобразователей должны соответствовать требованиям, указанным в руководстве по эксплуатации ВКТ-9.

Рассмотрим подключение расходомера ПРЭМ к ВКТ-9.

Но прежде, два слова о монтаже расходомера. Расходомер ПРЭМ выпускается в двух исполнениях: фланцевое и сэндвич. В зависимости от исполнения, расходомер монтируется на трубопровод определенным образом.

Если применимо фланцевое исполнение (Рисунок 4), то ответные фланцы расходомера совмещаются с фланцами, приваренными к трубопроводу по отверстиям. Предварительно между фланцами помещается паронитовая прокладка. Далее в отверстия фланцев вставляются болты и затягиваются методом "звезда" для равномерного распределения усилий по всей поверхности фланца. Для затяжки используется динамометрический ключ.



Рисунок 4. Монтаж ПРЭМ фланцевого исполнения.

Если исполнение – сэндвич (Рисунок 5), то расходомер не имеет фланцев. Он центруется между фланцами, которые приварены к трубопроводу, далее в отверстия фланцев вставляются шпильки с резьбой, и расходомер зажимается между фланцами, оставаясь "висеть в воздухе".

Чтобы расходомер работал, нужно его запитать от переменной сети 220В через блок питания постоянного напряжения 12 В. Также используя провод, необходимо провести сигнальную линию от ПРЭМ к винтовому клеммнику ВКТ-9 контакты V1- обычно подающий трубопровод, V2- обратный трубопровод, V3может служить трубопроводом подпитки, (Рисунок 6).

Длина линий связи до 500 м, длина линий питания зависит от сечения провода. Пример провода для подключения линий связи и питания: ШВВП 2x0,5







Рисунок 6. Клеммные колодки для подключения контактов преобразователей расхода в ВКТ-9

# ДАТЧИКИ ТЕМПЕРАТУРЫ (ТЕРМОСОПРОТИВЛЕНИЯ ПТ) 🏹

Рассмотрим подключение датчиков температуры к ВКТ-9.

Для питания преобразователей температуры не требуется внешних источников, так как питаются датчики от самого вычислителя, их энергопотребление незначительно. Подключить преобразователь можно по одной из предложенных схем:

Двухпроводная схема (не разъёмный двухжильный кабель).

Четырехпроводная схема.

Двухпроводная схема проста в подключении. Но есть существенный недостаток – для работы с ВКТ-9 необходимо использовать только неразъемный двухжильный кабель.

При четырехпроводной схеме длина линий может быть до 300 м, но, по сравнению с двух-проводной схемой, требуется больше соединительных проводов.

Мы рекомендуем использовать четырехпроводную схему. Этот вариант самый надежный, несмотря на увеличение количества используемых проводников.

Рассмотрим подключение термосопротивления к модели ВКТ-9-01 на примере распространенной двух-трубной системы отопления. Трубопроводы Тр1 и Тр2 объединены в одну тепловую систему TC1. Для подключения используется подобранная пара датчиков температуры (комплект), например, КТСП. Сокращение КТСП расшифровывается как комплект термосопротивлений. Пара подбирается с целью минимизации погрешности. Подключение к тепловычислителю производится по четырехпроводной схеме: на контакты t1-трубопровод подачи и t2- обратный трубопровод (см. рисунок 7 - Клеммные колодки для подключения контактов датчиков температуры к ВКТ-9). Необходимо соотнести нумерацию контактов в подключенном датчике с контактами (I+, U+, I-, U-) в клеммнике на ВКТ-9 (t1 и t2) (Рисунок 8). Для подключения рекомендуем использовать экранированные провода, например, ES-04S-022.

Термосопротивление монтируется на трубопровод в строго установленном месте. Сначала в трубопроводе вырезается отверстие под бобышку (рисунок 9). Затем бобышка приваривается к трубопроводу, в нее закручивается гильза, наполненная маслом, в гильзу погружается датчик температуры (чувствительный элемент), который фиксируется в гильзе винтом.

Длина линий связи до 300 м, пример провода для подключения: ES-04S-022.



Рисунок 7. Клеммные колодки для подключения контактов датчиков температуры к ВКТ-9.



Датчик температуры Гильза защитная Прокладка медная Бобышка угловая Трубопровод

Рисунок 8. Подключение датчика температуры к ВКТ-9 по четырехпроводной схеме Рисунок 9. Монтаж датчика температуры в трубопровод. Боковая бобышка Рассмотрим подключение преобразователей давления к ВКТ-9-01.

Преобразователи давления подключаются на колодки P1, P2, P3 тепловычислителя (контакты обозначены "+", " ⊥ " и "P"), где обычно P1 – подающий трубопровод, P2 – обратный трубопровод, a P3 – трубопровод подпитки (Pисунок 10). Преобразователи давления имеют собственные блоки питания (закупаются отдельно) напряжением от 9 до 24В. Упрощенную схему подключения можно посмотреть на Рисунке 11.

Если в тепловычислителе установлен сетевой модуль питания, то можно сэкономить на блоках питания ПД, их можно не использовать. В этом случае преобразователи давления питаются от ВКТ-9. Упрощенная схема подключения ПД к ВКТ-9 с блоком питания представлена на Рисунке 12.

Длина линий связи до 300 м, пример провода для подключения: ШВВП 2x0,5.

Рисунок 10. Клеммные колодки для подключения контактов преобразователей давления в ВКТ-9



#### Схема подключения преобразователей



ИП-источник питания постоянного тока

Разъем преобразователей

#### BKT-9-01, BKT-9-02



Рисунок 11. Схема подключения ПД к ВКТ-9, питание ПД от собственных блоков Рисунок 12. Схема подключения ПД к ВКТ-9, питание от ВКТ-9. Датчик давления монтируется в трубопровод через отборное устройство (прямая или петлевая трубка), которое можно посмотреть на Рисунке 13.



Рисунок 13. Монтаж преобразователя давления через петлевую трубку.

# НАСТРОЙКА ТЕПЛОВЫЧИСЛИТЕЛЯ ВКТ-9

Рассмотрим настройку ВКТ-9 на примере закрытой системы отопления.

Исходные данные: подающий и обратный трубопровод, датчики расхода (2 шт.), датчики температуры (подобранный комплект из 2 шт.) и датчики давления (2 шт.). Все преобразователи установлены на трубопровод (подающий и обратный), сигнальные линии подключены к ВКТ-9.

Датчики расхода запитаны от собственных блоков питания на 12В, а датчики давления питаются от ВКТ-9, в котором установлен сетевой блок (модуль) питания.

Также на руках должна быть таблица параметров настройки ВКТ-9, которые согласованы с Теплоснабжающей организацией.

По умолчанию ВКТ-9 находится в режиме "Работа". В этом режиме тепловычислитель пребывает большую часть своей эксплуатационной жизни, и настроить прибор не получится, так как любые попытки настройки будут блокированы прибором. Блокировка настройки нужна для пресечения возможных случайных или намеренных внесений изменений в настройку ВКТ-9.

Чтобы перевести ВКТ-9 из режима "Работа" в режим "Настройка", необходимо открыть прибор. Для этого нужно открути-ть 4 винта и отделить верхнюю часть кор-пуса от нижней. После этого натыльной стороне верхней крышки ВКТ-9 нужно найти специальный защитный колпачок, удалить из него мастику и открутить (Рисунок 14).



Рисунок 14. Колпачок для защиты от несанкционированного изменения настроечных параметров Под защитным колпачком находятся два штыревых контакта и джампер J1. Для перевода прибора в режим "Настройка" необходимо замкнуть штыревые контакты джампером J1 (Рисунок 15).

Контролировать режим работы ВКТ-9 можно с помощью жидкокристаллического дисплея. Нажимая стрелочные указатели «вверх-вниз» на клавиатуре прибора, находим пункт 4 «Сервис», нажимаем кнопку ввод Ч и выбираем пункт 2 – «Уровень доступа». На дисплее прибора будет показан режим, в котором в настоящий момент находится прибор.



Рисунок 15. Перевод тепловычислителя в режим "Настройка", джампер J1.

# ПРОГРАММИРОВАНИЕ ВКТ-9

Проверьте дату и время, указанные на ЖК дисплее прибора, и при необходимости скорректируйте: **п.3 «Настройка» → п.1 «Часы»** 

- 2
- Установите единицу измерений тепловой энергии: п.3 «Настройка» → п.5 «Общие» → «Единица измерения тепловой энергии» п.1 Ед.изм.тепл. → «Гкал»
- **1.** Выберите текущее время года: переходим в **п.7 «Лето/зима»**, в качестве примера установите **«Зима»**.
- 2. В п.8 «Холодная вода» выберите «Канал txв», установите значение «Договорное»
- 3. В п.9 установите единицу измерения давления: «МПа»
- 3
- Установите схему измерения п.3. «Настройка», п6. «ТС1»

### П.1. «Схема зимняя» → «Номер схемы».

Для рассматриваемой системы отопления номер схемы измерения – 2.1 (номер и принадлежность схем подробно описаны в РЭ ВКТ-9 раздел 3.3 «Схемы измерения и расчетные формулы»).



П.3 «Настройка», п.4. «Датчики»

## НАСТРОЙКА РАСХОДОМЕРОВ (V1, V2)

П.1 «Канал V», -1.TC1.V1

В тепловычислителе за единицу измерения веса импульса принимается «л/имп». Значение веса импульса расходомера нужно привести в соответствие с тепловычислителем. Вес имульса расходомера указан в его паспорте. Если размерность веса импульса по паспорту отлична от «л/имп», то необходимо перевести вес импульса в размерность «л/имп».

Так как в рассматриваемом примере два расходомера, устанавливаем значение веса импульса в обоих каналах V1 и V2.

## НАСТРОЙКА КАНАЛАТ (ТЕМПЕРАТУРА)

## -НСХ термосопротивления (преобразователь температуры)

## П.2 «Канал t», -1.TC1.t1

В паспорте преобразователя температуры указано значение параметра HCX (номинальная статическая характеристика), это значение необходимо записать в тепловычислитель. Например, одна из самых распространенных HCX – «Pt100».

## НАСТРОЙКА КАНАЛА Р (ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ Р1, Р2)

#### - Датчик, ток датчика

## П.3 «Канал Р», -1.TC1.P1

В пункте «Датчик» укажем значение верхней границы давления (размерность – МПа), эти данные указаны в паспорте преобразователя давления (например, 1,6МПа). Программируем два канала Р1 и Р2.

Аналогично для каждого канала Р1, Р2 укажем значение тока датчика, которое тоже имеется в паспорте преобразователя давления (например, 4-20мА).

# 5

#### Нештатные ситуации

Иногда при эксплуатации ВКТ-9 могут возникнуть нештатные ситуации (HC). Чтобы избежать некорректного расчета количества тепловой энергии, в тепловычислителе можно настроить определенную реакцию на случай HC. Например, произошел обрыв сигнальной линии от расходомера. В этом случае, при условии наличия указанной настройки, ВКТ-9 подставит договорное значение расхода. Все реакции на HC должны быть согласованы с Теплоснабжающей организацией и занесены в шаблон настроек тепловычислителя.

В нашем примере рекомендуется оставить реакции на НС как заданные по умолчанию. Более подробно возможности настройки реакций на НС можно рассмотреть в РЭ, Приложение А.

На этом настройка тепловычислителя ВКТ-9 закончена. Но прежде чем закрыть прибор, необходимо:

- Провести операцию «Сброс архива», для этого необходимо перейти в п.4 «Сервис» → п. 9 «Сброс» и выбрать «Сброс архива».
- Перевести прибор в режим «Работа», вытащить джампер J1 (См. Рисунок15).

В результате прибор имеет следующую настройку параметров описанную в таблице:

| Ha       | астройки         | Параметр    |             |         |        |       |                       |                            |  |  |  |  |  |  |
|----------|------------------|-------------|-------------|---------|--------|-------|-----------------------|----------------------------|--|--|--|--|--|--|
| 1.Время  |                  | Текущее вр  | емя         |         | по фак | ту    | час.минута.секунда    |                            |  |  |  |  |  |  |
| 1. Часы  | 2.Дата           | Текущая дат | га          |         | по фак | ту    | день/месяц/год        |                            |  |  |  |  |  |  |
|          |                  |             | 4. Датч     | ики     |        |       |                       |                            |  |  |  |  |  |  |
|          |                  |             | TC1         |         |        |       |                       |                            |  |  |  |  |  |  |
|          |                  | Tp1         | Tp2         |         |        |       |                       |                            |  |  |  |  |  |  |
| Каналы V | Вес импульса     | из паспорта | из паспорта |         | _      | _     | _                     | от 0,001 до<br>10000 л/имп |  |  |  |  |  |  |
| Каналы I | нсх тсп          | Pt100       | Pt100       | _       | -      | -     | _                     |                            |  |  |  |  |  |  |
|          | Датчик           | 1.6МПа      | 1.6МПа      | —       | _      | -     | _                     | верхняя граница            |  |  |  |  |  |  |
| Каналы Р | Ток датчика      | 420мА       | 420мА       | _       | _      | -     | _                     | диапазон<br>выходного тока |  |  |  |  |  |  |
|          | 1. Ед.изм.темп.  | Ед.изм.тепл | .энергии    |         | Гкал   |       |                       | •                          |  |  |  |  |  |  |
|          | 7. Зима          | Текущий пе  | риод        |         | Зимни  | й     |                       |                            |  |  |  |  |  |  |
| 5. Общие | 8. Хол.вода      | Канал txe   |             |         | Догов  | орное |                       |                            |  |  |  |  |  |  |
|          | 9. Разм.давления | Разм-ть дав | ления       |         | МПа    |       | размерность давления  |                            |  |  |  |  |  |  |
|          |                  |             | 6. Наст     | ройки 🛛 | гс     |       |                       |                            |  |  |  |  |  |  |
| 6. TC1   | 1. Схема зимняя  | Номер схем  | ы           |         | 2      | 2.1   | номер схемы измерений |                            |  |  |  |  |  |  |

Таблица параметров настройки ВКТ-9-01

## ПРОСМОТР НАКОПЛЕННЫХ ДАННЫХ И ПОЛУЧЕНИЕ ОТЧЕТА

Тепловычислитель ВКТ-9 имеет следующие архивы: часовой, суточный, месячный, итоговый. Глубина архива: часовой-1488 часов, суточный-730 суток, месячный-48 месяцев, итоговый-730 суток. Кроме этого, ВКТ-9 имеет нестираемый «Журнал действий оператора» (3000 записей), который содержит всю информацию о действиях при настройке прибора с указанием измененного параметра (было/стало) и времени изменения параметра.

## Просмотр накопленных данных с ЖК дисплея

Просмотреть накопленные данные можно на жидкокристаллическом дисплее ВКТ-9 или при помощи внешних устройств: ПК, модем, преобразователи интерфейсов.

Для просмотра накопленных данных с жидкокристаллического дисплея ВКТ-9 достаточно пройти в п.2 «Архивы», далее выбрать интересующий архив, например, «часовой» и дату, на которую необходимо получить данные.

#### Просмотр накопленных данных через внешние устройства

Рассмотрим самый простой вариант считывания данных с ВКТ-9, используя имеющийся в приборе выход USB и подключение ПК.

Для этого нам понадобятся:

- ПК (ноутбук).
- Провод USB-A-USB-В (этот провод мы часто используем для подключения принтера к ПК).
- Драйвер подключения ВКТ-9 по интерфейсу USB. Драйвер можно скачать на официальном сайте Теплоком: teplocom-sale.ru, раздел «Программное обеспечение».
- Программное обеспечение «Менеджер данных». Эту программу также можно скачать с сайта Теплоком в разделе «Программное обеспечение».

Установим драйвер, следуя инструкции (инструкция находится в папке с драйвером).

Настроим программу для опроса «Менеджер данных»:

- Установите программу.
- 2
- При входе в программу потребуется пароль, в окне «пароль» нужно ввести: **admin**
- 3

Зайдите в раздел **«Связь»**, далее **«Опросить прибор»**, выберите прибор ВКТ-9 и способ опроса -COM порт (RS-232), задайте скорость обмена (19200), сетевой адрес 0, укажите требуемый интервал дат и установите галочки, какие именно отчеты считывать (часовой, суточный, месячный, настройки, журнал оператора). Для проверки рекомендуем поставить галочку только напротив **«Суточный»**.

4

После опроса в окне **«Узлы»** появится наименование опрашиваемого прибора ВКТ-9, его заводской номер и время опроса:





Далее, наведите курсор мыши на появившийся узел, нажмите правую кнопку мыши, выберите **«Свойства»** 



В открывшемся окне «Свойства узла» можно задать информацию по узлу учета:



Для формирования отчета необходимо навести курсор мыши на появившийся узел ВКТ-9 и выбрать **«Генерировать отчет»:** 



Далее рекомендуем выбрать «Стандартный отчет»:



В следующем диалоговом окне для проверки заполнения отчета выберите **«Все данные»**:



В окне **«Предварительный просмотр»** можно увидеть сформированный отчет:



Для сохранения отчета в формате PDF нужно навести курсор мыши на знак PDF и нажать на него:

| a a cortes | 20 0                                | 300% -                                                |                                             | 11 10         | 1              | 4 1             |                                                                                                                                                                           |        | 30               | фыть           | J                               |                  |                       |             |          |                                        |                  |                               |                 |                          |                   |        |
|------------|-------------------------------------|-------------------------------------------------------|---------------------------------------------|---------------|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|----------------|---------------------------------|------------------|-----------------------|-------------|----------|----------------------------------------|------------------|-------------------------------|-----------------|--------------------------|-------------------|--------|
| Coxpan     | orts e PO                           | λ <del>Ε</del>                                        |                                             |               |                |                 |                                                                                                                                                                           |        |                  |                |                                 |                  |                       |             |          |                                        |                  |                               |                 |                          |                   |        |
|            |                                     |                                                       |                                             | 2             | мдоност        | rs yeer         | а средя                                                                                                                                                                   | 96 YAC | PIOBOIN          | O OTI          | NCKA T                          | entosos          | в энерг               | GE B C      | NCTON    | o o torites                            | 1016             |                               |                 |                          |                   |        |
|            | Адрес<br>Поджля<br>Догово<br>И сет. | : Севержая<br>риен к або<br>риме раснол<br>водыт т.су | , 111<br>женту 2000<br>м                    | ABK           |                |                 |                                                                                                                                                                           |        | Dpease<br>2y noi | au 101<br>2* 1 | epecoda:<br>M G noz             | nar 1            | 2,00 H3/9             | 6 ma        | nin*     | Тип те<br>Номер<br>Ввод Э<br>0,02 м3/ч | tennocui<br>1 Ca | 17400X4<br>1487404<br>18388 2 | n/Heen          | -9.1.<br>00055<br>Nextra | 1<br>53<br>1 9 1. | .1     |
|            | Txa= 0                              | 9.69 °C                                               |                                             |               |                |                 |                                                                                                                                                                           |        | 27 001           |                | ex G oбş<br>€i G no.z           | max* 1<br>max* 0 | 2,00 H3/4<br>,00 H3/4 | G no.a      | BLOP D   | 0,02 M3/4<br>0,00 M3/4                 | Non Ne           | - 0,5<br>- 1 A                | 7/1645<br>/1845 |                          |                   |        |
|            |                                     | Tennosan                                              | Tennosan<br>avegrus no                      |               |                | Maco<br>Of sets | Nacca rennovcoment sa cytrux. N. + Texnepanyos rennovcomente. *C. Destructe rennovcomente sa cytrux. V. vid costante sequences Mite. ************************************ | n. u   |                  |                |                                 |                  |                       |             |          |                                        |                  |                               |                 |                          |                   |        |
|            | Дага.                               | noiasawatur<br>tentocuénuna<br>saloyne, Qe            | tennoculitunal<br>8 tpetuau<br>19y6orgoetae | Поди<br>труба | inuni<br>poesa | Of p<br>tpyfo   | rpoeog                                                                                                                                                                    | -14    | -04              | ei             | dv Tpenvil rpy6or<br>py6onpoend |                  | Total court           | Of pan-will | Pap-och  | Третий<br>трубопровна<br>Трубопровна   |                  | of se-                        | the stay        | Taud                     | 7=10              | Koa HC |
|            |                                     | Duan                                                  | IN OUTINE, CONS.<br>Frank                   | M1            | V1             | W2              | V2                                                                                                                                                                        |        |                  |                | M3(n)                           | V3(r)            | 11                    | 6           | devel-12 | rognymu<br>t3(x)                       | P1               | P2                            | P3(r)           |                          |                   |        |
|            | 01.01.14                            | 0.00                                                  | -                                           | 0.00          | 0.00           | 0.00            | 0.00                                                                                                                                                                      |        |                  | 0.00           | -                               | -                | 0.00                  | 0.00        | 0.00     | -                                      | 0.50             | 0.50                          | -               | 0.00                     | 2.05              | C.D    |
|            | 101100.00                           | w 90                                                  |                                             | 1.00          | w.00           | v.00            | v.90                                                                                                                                                                      |        |                  | 4.00           |                                 |                  | - 00 v                | 4.00        | 3.00     |                                        | A-36             | ¥.99                          |                 | 9.99                     | 0.05              | 2.2    |

В нашей шпаргалке мы рассмотрели основные этапы установки и настройки тепловычислителя ВКТ-9. Надеемся, что изложенная информация была полезна.

Спешим напомнить, что на сайте **www.teplocom-sale.ru** доступно полное руководство по эксплуатации тепловычислителя ВКТ-9 и программное обеспечение, необходимое для работы с приборами. Как и прежде, можно обратиться за помощью в техническую поддержку Теплоком удобным для Вас способом: консультация по телефону, чат, Телеграм-канал или задать вопрос на сайте. Наши специалисты дадут исчерпывающую информацию по интересующим вопросам.



## 8 800 250-03-03 БЕСПЛАТНЫЙ ПО РФ INFO@TEPLOCOM-SALE.RU